Inmunidad innata frente a retrovirus

Lucia González, Natalia Ibañez, Marcelo Mateus, Karina Romero, Otto Pritsch

Resumen


Los retrovirus son un diverso grupo de virus que se encuentran en los vertebrados. Su importancia biomédica radica en que son capaces de infectar humanos, produciendo importantes problemas de salud. El virus de la inmunodeficiencia humana (VIH) es capaz de producir un estado de inmunodeficiencia en el huésped determinando el desarrollo de enfermedades oportunistas en estadio avanzados de la enfermedad. Frente a la entrada de un retrovirus al organismo, nuestro sistema inmune presenta como primera línea de defensa a la inmunidad innata. El resultado de esta respuesta es la inducción de interferones de tipo I (IFN tipo I) quienes generan un estado antiviral en la célula. Recientemente se ha ampliado la investigación sobre diferentes factores de restricción del huésped que forman parte de la inmunidad innata antiviral determinando la inhibición de la replicación de los retrovirus. En esta revisión abordaremos las distintas vías de señalización implicadas en la función de estos factores. Dentro de ellos, se mencionarán; el SAMHD1 que determina un agotamiento del pool celular de dNTP inhibiendo los pasos tempranos de la retrotranscripción en células infectadas; TREX1 que es considerado un factor de restricción del huésped antagónico ya que la ausencia del mismo resulta en la activación de una respuesta de interferón; APOBEC3 que media la restricción viral principalmente por un mecanismo de edición del DNA; TRIM5α que puede formar una estructura hexagonal por encima de la cápside, lo cual desestabilizaría el core viral; Tetherin que es capaz de bloquear la liberación de viriones de VIH.

Palabras clave


factores de restricción viral innatos; retrovirus; SAMHD1; Trex1; Trim5α; Tetherin

Texto completo:

PDF

Referencias


Nelson PN, Carnegie PR, Martin J, Davari H, Hooley P, Roden D. Demystified. Human endogenous retroviruses. Mol Pathol. 2003 Feb;56(1):11-8.

Goff SP. Retroviridae. En: Knipe DM, Howley PM. Fields virology. 6a ed. Philadephia: Lippincott Williams&Wilkins; 2013. p.1426-31.

Cordeiro N, Taroco R, Ruchansky D. Retrovirus. Virus de la inmunodeficiencia humana. En: Universidad de la República (Uruguay). Facultad de Medicina. Departamento de Bacteriología y Virología. Temas de bacteriología y virología médica. Montevideo: Oficina del Libro-FEFMUR; 2008. p. 527-59.

Manns A, Hisada M, La Grenade L. Human T-lymphotropic virus type I infection. Lancet. 1999 Jun;353(9168):1951-8. http://dx.doi.org/10.1016/S0140-6736(98)09460-4

Iwasaki A, Medzhitov R. Innate responses to viral infections. En: Knipe DM, Howley PM. Fields virology. 6a ed. Philadephia: Lippincott Williams&Wilkins; 2013. p. 190–210.

Iwasaki A. Innate immune recognition of HIV-1. Immunity. 2012 Sep;37(3):389–98. http://dx.doi.org/10.1016/j.immuni.2012.08.011

Rustagi A, Gale M Jr. Innate antiviral immune signaling, viral evasion and modulation by HIV-1. J Mol Biol. 2013 Mar;426(6):1161-77. http://dx.doi.org/10.1016/j.jmb.2013.12.003

Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335-76.

Lester SN, Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol. 2014 Mar;426(6):1246-64. http://dx.doi.org/10.1016/j.jmb.2013.11.024

Barbé F, Douglas T, Saleh M. Advances in Nod-like receptors (NLR) biology. Cytokine Growth Factor Rev. 2014;25(6):681-97. http://dx.doi.org/10.1016/j.cytogfr.2014.07.001

Sze A, Olagnier D, Lin R, van Grevenynghe J, Hiscott J. SAMHD1 host restriction factor: a link with innate immune sensing of retrovirus infection. J Mol Biol. 2013 Dec;425(24):4981-94. http://dx.doi.org/10.1016/j.jmb.2013.10.022

Beloglazova N, Flick R, Tchigvintsev A, Brown G, Popovic A, Nocek B, et al. Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutières syndrome and HIV-1 restriction. J Biol Chem. 2013 Mar;288(12):8101-10. http://dx.doi.org/10.1074/jbc.M112.431148

White TE, Brandariz-Nuñez A, Valle-Casuso JC, Amie S, Nguyen L, et al. Contribution of SAM and HD domains to retroviral restriction mediated by human SAMHD1. Virology. 2013 Feb;436(1):81-90. http://dx.doi.org/10.1016/j.virol.2012.10.029

Franzolin E, Pontarin G, Rampazzo C, Miazzi C, Ferraro P, Palumbo E, Reichard P, Bianchi V. The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc Natl Acad Sci USA. 2013;110(35):14272-7. http://dx.doi.org/10.1073/pnas.1312033110

Douville RN, Hiscott J. The interface between the innate interferon response and expression of host retroviral restriction factors. Cytokine. 2010;52(1-2):108-15. http://dx.doi.org/10.1016/j.cyto.2010.04.010

Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS. Evolution of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases. Mol Biol Evol. 2005 Feb;22(2):367-77. http://dx.doi.org/10.1093/molbev/msi026

Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, Scott J, et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics. 2002 Mar;79(3):285–96. http://dx.doi.org/10.1006/geno.2002.6718

Bogerd HP, Wiegand HL, Doehle BP, Lueders KK, Cullen BR. APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res. 2006 Jan 10;34(1):89-95. http://dx.doi.org/10.1093/nar/gkj416

Kinomoto M, Kanno T, Shimura M, Ishizaka Y, Kojima A, Kurata T, et al. All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Res. 2007;35(9):2955–64. http://dx.doi.org/10.1093/nar/gkm181

Delebecque F, Suspene R, Calattini S, Casartelli, N., Saïb, A., Froment, A, et al. Restriction of foamy viruses by APOBEC cytidine deaminases. J Virol. 2006 Jan;80(2):605–14. http://dx.doi.org/10.1128/JVI.80.2.605-614.2006

Yu Q, Chen D, König R, Mariani R, Unutmaz D, Landau NR. APOBEC3B and APOBEC3C are potent inhibitors of simian immunodeficiency virus replication. J Biol Chem; 2004 Dec;279(51):53379–86. http://dx.doi.org/10.1074/jbc.M408802200

Viera VC, Soares MA. The role of cytidine deaminases on innate immune responses against human viral infections. Bio Res Int [Internet]. 2013 [citado 2015 agos 19];2013:ID 683095 http://dx.doi.org/10.1155/2013/683095

Cen S, Guo F, Niu M, Saadatmand J, Deflassieux J, Kleiman L. The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem. 2004 Aug 6;279(32):33177-84. http://dx.doi.org/10.1074/jbc.M402062200

Douaisi M, Dussart S, Courcoul M, Bessou G, Vigne R, Decroly E. HIV-1 and MLV Gag proteins are sufficient to recruit APOBEC3G into virus-like particles. Biochem Biophys Res Commun. 2004;321(3):566–73. http://dx.doi.org/10.1016/j.bbrc.2004.07.005

Schröfelbauer B, Yu Q, Zeitlin SG, Landau NR. Human immunodeficiency virus type 1 Vpr induces the degradation of the UNG and SMUG Uracil-DNA glycosylases. J Virol. 2005 Sep;79(17):10978–87. http://dx.doi.org/10.1128/JVI.79.17.10978-10987.2005

Yang B, Chen K, Zhang C, Huang S, Zhang H. Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent HIV-1 DNA. J Biol Chem. 2007 Apr;282(16):11667–75. http://dx.doi.org/10.1074/jbc.M606864200

Nisole S, Stoye JP, Saib A. TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol. 2005 Oct;3(10):799–808. http://dx.doi.org/10.1038/nrmicro1248

Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, et al. The tripartite motif family identifies cell compartments. EMBO J. 2001 May;20(9):2140–51. http://dx.doi.org/10.1093/emboj/20.9.2140

Towers GJ. The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology. 2007 Jun;4:40. http://dx.doi.org/10.1186/1742-4690-4-40

Battivelli E, Migraine J, Lecossier D, Matsuoka S, Perez-Bercoff D, Saragosti S, et al. Modulation of TRIM5alpha activity in human cells by alternatively spliced TRIM5 isoforms. J Virol. 2011 Aug;85(15):7828-35. http://dx.doi.org/10.1128/JVI.00648-11

Ohkura S, Yap MW, Sheldon T, Stoye JP. All three variable regions of the TRIM5alpha B30.2 domain can contribute to the specificity of retrovirus restriction. J Virol. 2006 Sep;80(17):8554–65. http://dx.doi.org/ 10.1128/JVI.00688-06

Perez-Caballero D, Hatziioannou T, Yang A, Cowan S, Bieniasz PD. Human tripartite motif 5alpha domains responsible for retrovirus restriction activity and specificity. J Virol. 2005 Jul;79(14):8969–78. http://dx.doi.org/10.1128/JVI.79.14.8969-8978.2005

Zheng YH, Jeang KT, Tokunaga K. Host restriction factors in retroviral infection: promises in virus-host interaction. Retrovirology [Internet]. 2012 Dec [citado 2015 agos 19];9:112. Disponible en: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002009 http://dx.doi.org/10.1186/1742-4690-9-112

Lukic Z, Campbell EM. The cell biology of TRIM5α. Curr HIV/AIDS Rep. 2012 Mar;9(1):73–80. http://dx.doi.org/10.1007/s11904-011-0102-8

Pornillos O, Ganser-Pornillos BK, Yeager M. Atomic-level modelling of the HIV capsid. Nature. 2011 Jan;469(7330):424–7. http://dx.doi.org/10.1038/nature09640

Ganser-Pornillos BK, Chandrasekaran V, Pornillos O, Sodroski JG, Sundquist WI, Yeager M. Hexagonal assembly of a restricting TRIM5alpha protein. Proc Natl Acad Sci USA. 2011 Jan;108(2):534–9. http://dx.doi.org/10.1073/pnas.1013426108

Nepveu-Traversy ME, Berube J, Berthoux L. TRIM5alpha and TRIMCyp form apparent hexamers and their multimeric state is not affected by exposure to restriction-sensitive viruses or by treatment with pharmacological inhibitors. Retrovirology. 2009 Nov;6:100. http://dx.doi.org/10.1186/1742-4690-6-100

Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, et al. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci USA. 2006 Apr;103(14):5514–9. http://dx.doi.org/10.1073/pnas.0509996103

Zhao G, Ke D, Vu T, Ahn J, Shah VB, Yang R, et al. Rhesus TRIM5alpha disrupts the HIV-1 capsid at the inter-hexamer interfaces. PLoS Pathog. 2011 Mar;7(3):e1002009. http://dx.doi.org/10.1371/journal.ppat.1002009

Kupzig S, Korolchuk V, Rollason R, Sugden A, Wilde A, Banting G. Bst-2/ HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic. 2003 Oct;4(10):694–709.

Sakai H, Tokunaga K, Kawamura M, Adachi A. Function of human immunodeficiency virus type 1 Vpu protein in various cell types. J Gen Virol. 1995 Nov;76(Pt 11):2717–22.

Geraghty RJ, Talbot KJ, Callahan M, Harper W, Panganiban AT. Cell type- dependence for Vpu function. J Med Primatol. 1994 Feb-May;23(2-3):146–50.

Van Damme N, Goff D, Katsura C, Jorgenson R, Mitchell R, Johnson M, et al. The interferon-induced protein BST-2 restricts HIV- 1 release and is down-regulated from the cell surface by the viral Vpu. Cell Host Microbe. 2008 Apr;3(4):245–52. http://dx.doi.org/10.1016/j.chom.2008.03.001

Neil SJ, Sandrin V, Sundquist WI, Bieniasz PD. An interferon-alpha-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein. Cell Host Microbe. 2007 Sep;2(3):193–203. http://dx.doi.org/10.1016/j.chom.2007.08.001

Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008 Jan;451(7177):425–30. http://dx.doi.org/10.1038/nature06553

Smith PL, Lombardi G, Foster GR. Type I interferons and the innate immune response-more than just antiviral cytokines. Mol Immunol. 2005 May;42(8):869-77. http://dx.doi.org/10.1016/j.molimm.2004.11.008

Dumoutier L, Lejeune D, Hor S, Ficknscher H, Renaurd JC. Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochem J. 2003;370(Pt2):391-6. http://dx.doi.org/10.1042/bj20021935

Van Dommelen SL, Degli-Esposti MA. NKT cells and viral immunity. Immunol Cell Biol. 2004 Jun;82(3):332-41. http://dx.doi.org/10.1111/j.0818-9641.2004.01261.x

Li D, Xu XN. NKT cells in HIV-1 infection. Cell Res. 2008 Aug;18(8):817-22. http://dx.doi.org/10.1038/cr.2008.85

French A, Yokoyama W. Natural killer cells and autoimmunity. Arthritis Res Ther. 2004; 6(1): 8–14). http://dx.doi.org/10.1186/ar1034

Gómez-Lucía E, Collado VM, Miró G, Doménech A. Effect of type I interferon on retroviruses. Viruses. 2009 Dec;1(3):545-73. http://dx.doi.org/10.3390/v1030545


Enlaces refback





      Licencia Creative Commons Licencia Creative Commons Atribución 4.0 Internacional