Rol de las uniones estrechas del epitelio intestinal en la patogenia de la enfermedad de Crohn

Contenido principal del artículo

Dionisio Díaz
Rodrigo Dorelo
Diego Fleitas
Silvia Chifflet

Resumen

La enfermedad de Crohn, un tipo de enfermedad inflamatoria intestinal, afecta la integridad estructural y funcional de la barrera intestinal. Esta barrera está constituida por una capa de células epiteliales que forman una monocapa continua y polarizada, estrechamente conectada por varios tipos de uniones celulares, entre las que se destacan las uniones estrechas. Las uniones estrechas forman una estructura continua entre los dominios apical y basolateral en las células epiteliales y endoteliales, creando una barrera paracelular selectiva fundamental para la homeostasis del organismo. La disfunción de la barrera epitelial juega un papel central en la fisiopatología de la enfermedad de Crohn. Los pacientes con enfermedad de Crohn presentan una pérdida de la función de barrera de las uniones estrechas y un aumento de la producción de citoquinas pro-inflamatorias, así como una desregulación del sistema inmune.En esta revisión se describe brevemente la composición molecular, estructura, interacciones y función de las uniones estrechas, además de mostrar evidencia reciente acerca de la relación entre la disfunción de las mismas y la enfermedad de Crohn. También se detalla el rol de la microbiota en la regulación de las uniones estrechas, así como el papel de la desregulación de estas uniones en el desarrollo del cáncer asociado a la enfermedad de Crohn. Finalmente, se describen hallazgos de la literatura actual respecto a la posible utilidad de las uniones estrechas como blanco de nuevos medicamentos.

Detalles del artículo

Cómo citar
Díaz, D., Dorelo, R., Fleitas, D., & Chifflet, S. (2015). Rol de las uniones estrechas del epitelio intestinal en la patogenia de la enfermedad de Crohn. Anales De La Facultad De Medicina, Universidad De La República, Uruguay, 2, 48-58. Recuperado a partir de http://www.anfamed.edu.uy/index.php/rev/article/view/157
Sección
Monografías

Citas


  1. Rozman C, director. Farreras-Rozman. Medicina interna. 17a ed. Barcelona: Elsevier; 2012.

  2. Edelblum KL, Turner JR. The tight junction in inflammatory disease: communication breakdown. Curr Opin Pharmacol. 2009 Dec;9(6):715-20.
    http://dx.doi.org/10.1016/j.coph.2009.06.022

  3. Hering NA, Fromm M, Schulzke JD. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol. 2012 Mar;590(Pt 5):1035-44.
    http://dx.doi.org/10.1113/jphysiol.2011.224568

  4. Gupta P, Andrew H, Kirschner BS, Guandalini S. Is lactobacillus GG helpful in children with Crohn’s disease? Results of a preliminary, open-label study. J Pediatr Gastroenterol Nutr. 2000 Oct;31(4):453-7.

  5. Anderson CA, Boucher G, Lees CW, Franke A, D’Amato M, Taylor KD, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011 Mar;43(3):246-52. http://dx.doi.org/10.1038/ng.764

  6. Buhner S, Buning C, Genschel J, Kling K, Herrmann D, Dignass A, et al. Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut. 2006 Mar;55(3):342-7. http://dx.doi.org/10.1136/gut.2005.065557

  7. Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med. 1997 Oct 9;337(15):1029-35.
    http://dx.doi.org/10.1056/NEJM199710093371502

  8. Colombel JF, Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Panaccione R, et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology. 2007 Jan;132(1):52-65. http://dx.doi.org/10.1053/j.gastro.2006.11.041

  9. Benjamin MA, McKay DM, Yang PC, Cameron H, Perdue MH. Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut. 2000 Jul;47(1):112-9. http://dx.doi.org/10.1136/gut.47.1.112

  10. El-Tawil AM. Zinc supplementation tightens leaky gut in Crohn’s disease. Inflamm Bowel Dis. 2012 Feb;18(2):E399. http://dx.doi.org/10.1002/ibd.21926

  11. Amasheh M, Fromm A, Krug SM, Amasheh S, Andres S, Zeitz M, et al. TNFalpha-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFkappaB signaling. J Cell Sci. 2010 Dec 1;123(Pt 23):4145-55. http://dx.doi.org/10.1242/jcs.070896

  12. Amasheh M, Schlichter S, Amasheh S, Mankertz J, Zeitz M, Fromm M, et al. Quercetin enhances epithelial barrier function and increases claudin-4 expression in Caco-2 cells. J Nutr. 2008 Jun;138(6):1067-73.

  13. Roselli M, Finamore A, Britti MS, Mengheri E. Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88. Br J Nutr. 2006 Jun;95(6):1177-84.
    http://dx.doi.org/10.1079/BJN20051681

  14. Balda MS, Matter K. Tight junctions. J Cell Sci. 1998 Mar;111(Pt 5):541-7.

  15. Madara JL. Regulation of the movement of solutes across tight junctions. Annu Rev Physiol. 1998;60:143-59. http://dx.doi.org/10.1146/annurev.physiol.60.1.143

  16. Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol. 1999 Jul;9(7):268-73. http://dx.doi.org/10.1016/S0962-8924(99)01578-0

  17. Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated Maguks, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol. 1999 Dec 13;147(6):1351-63.

  18. Swisshelm K, Macek R, Kubbies M. Role of claudins in tumorigenesis. Adv Drug Deliv Rev. 2005 Apr 25;57(6):919-28. http://dx.doi.org/10.1016/j.addr.2005.01.006

  19. Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol. 1999 Nov 15;147(4):891-903.
    http://dx.doi.org/10.1083/jcb.147.4.891

  20. Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007 Jan;56(1):61-72. http://dx.doi.org/10.1136/gut.2006.094375

  21. Vetrano S, Danese S. The role of JAM-A in inflammatory bowel disease: unrevealing the ties that bind. Ann N Y Acad Sci. 2009 May;1165:308-13. http://dx.doi.org/10.1111/j.1749-6632.2009.04045.x.

  22. Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004 Jun;286(6):C1213-28. http://dx.doi.org/10.1152/ajpcell.00558.2003

  23. Bourlioux P, Koletzko B, Guarner F, Braesco V. The intestine and its microflora are partners for the protection of the host. Report on the Danone Symposium “The Intelligent Intestine”; Paris; 2002 June 14. Am J Clin Nutr. 2003 Oct;78(4):675-83.

  24. Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA, et al. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol. 2007 Mar;9(3):804-16. http://dx.doi.org/10.1111/j.1462-5822.2006.00836.x

  25. Gibson GR. Fibre and effects on probiotics (the prebiotic concept). Clin Nutr Suppl. 2004;1(2):25-31. http://dx.doi.org/10.1016/j.clnu.2004.09.005

  26. Fiocchi C. Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology. 1998;115(1):182-205.

  27. Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR. Interferon-γ and tumor necrosis factor-α synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol. 2005 Feb;166(2):409-19.
    http://dx.doi.org/10.1016/S0002-9440(10)62264-X

  28. Mellemkjær L, Johansen C, Gridley G, Linet M, Kjær S, Olsen J. Crohn’s disease and cancer risk (Denmark). Cancer Causes Control. 2000 Feb;11(2):145-50.

  29. Bernstein CN, Blanchard JF, Kliewer E, Wajda A. Cancer risk in patients with inflammatory bowel disease. Cancer. 2001;91(4):854-62.

  30. Itzkowitz SH, Present DH. Consensus conference: Colorectal cancer screening and surveillance in inflammatory bowel disease. Inflamm Bowel Dis. 2005;11(3):314-21.

  31. Bressenot A, Cahn V, Danese S, Peyrin-Biroulet L. Microscopic features of colorectal neoplasia in inflammatory bowel diseases. World J Gastroenterol. 2014 Mar 28;20(12):3164-72.

  32. Martin TA, Jiang WG. Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta. 2009 Apr;1788(4):872-91. http://dx.doi.org/10.1016/j.bbamem.2008.11.005

  33. 33. Morin PJ. Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res. 2005 Nov 1;65(21):9603-6. http://dx.doi.org/10.1158/0008-5472.CAN-05-2782

  34. Tokunaga Y, Tobioka H, Isomura H, Kokai Y, Sawada N. Expression of occludin in human rectal carcinoid tumours as a possible marker for glandular differentiation. Histopathology. 2004 Mar;44(3):247-50. http://dx.doi.org/10.1111/j.0309-0167.2003.01807.x

  35. Lichtenstein GR, Hanauer SB, Sandborn WJ ; Practice Parameters Committee of American College of Gastroenterology. Management of Crohn’s disease in adults. Am J Gastroenterol. 2009 Feb;104(2):465-83. http://dx.doi.org/10.1038/ajg.2008.168

  36. Zettl KS, Sjaastad MD, Riskin PM, Parry G, Machen TE, Firestone GL. Glucocorticoid-induced formation of tight junctions in mouse mammary epithelial cells in vitro. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9069-73.

  37. Fischer A, Gluth M, Weege F, Pape UF, Wiedenmann B, Baumgart DC, et al. Glucocorticoids regulate barrier function and claudin expression in intestinal epithelial cells via MKP-1. Am J Physiol Gastrointest Liver Physiol. 2014 Feb;306(3):G218-28. http://dx.doi.org/10.1152/ajpgi.00095.2013

  38. Swidsinski A, Loening-Baucke V, Bengmark S, Lochs H, Dorffel Y. Azathioprine and mesalazine-induced effects on the mucosal flora in patients with IBD colitis. Inflamm Bowel Dis. 2007 Jan;13(1):51-6.

  39. Marinkovic G, Hamers AAJ, de Vries CJM, de Waard V. 6-Mercaptopurine Reduces Macrophage Activation and Gut Epithelium Proliferation Through Inhibition of GTPase Rac1. Inflamm Bowel Dis. 2014;20(9):1487-95.

  40. Beutheu Youmba S, Belmonte L, Galas L, Boukhettala N, Bôle-Feysot C, Déchelotte P, et al. Methotrexate Modulates tight junctions through NF-κB, MEK, and JNK pathways. J Pediatr Gastroenterol Nutr. 2012 Apr;54(4):463-70. http://dx.doi.org/10.1097/MPG.0b013e318247240d

  41. Hamada K, Shitara Y, Sekine S, Horie T. Zonula Occludens-1 alterations and enhanced intestinal permeability in methotrexate-treated rats. Cancer Chemother Pharmacol. 2010 Nov;66(6):1031-8. http://dx.doi.org/10.1007/s00280-010-1253-9

  42. Rampton DS. Methotrexate in Crohn’s disease. Gut. 2001 Jun;48(6):790-1. http://dx.doi.org/10.1136/gut.48.6.790

  43. Fischer A, Gluth M, Pape UF, Wiedenmann B, Theuring F, Baumgart DC. Adalimumab prevents barrier dysfunction and antagonizes distinct effects of TNF-alpha on tight junction proteins and signaling pathways in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2013 Jun 1;304(11):G970-9. http://dx.doi.org/10.1152/ajpgi.00183.2012

  44. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001 Apr;2(4):285-93. http://dx.doi.org/10.1038/35067088

  45. Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS. 2011;8(1):3. http://dx.doi.org/10.1186/2045-8118-8-3